Surrey Lab

Surrey Lab

Cell and Developmental Biology

Surrey Lab
Intracellular Self-Organization
Group leader
j

Surrey Lab

Intracellular Self-Organization
Group leader
j

from October 2019 ICREA Research Professor and Group Leader, Center for Genomic Regulation, Barcelona, Spain
2015 - 2019 Senior group leader, The Francis Crick Institute, London, UK
2011 - 2015 Senior group leader, London Research Institute, Cancer Research UK
2002 - 2010 Team/group leader, EMBL Heidelberg, Germany
1998 - 2002 Postdoctoral fellow/staff scientist, EMBL Heidelberg, Germany
1995 - 1997 Postdoctoral fellow, Princeton University, USA
1995 PhD in Biochemistry, University of Tübingen, Germany

Please note that this group will be joining the CRG in October 2019

Summary

We are studying how the internal structure of cells self-organizes. We want to understand how the different parts of the internal scaffold of the cell - the cytoskeleton - work together to form distinct architectures and how these architectures change as the cell divides or differentiates. In other words, we aim to find out how complex biological structures can be created from simple, smaller parts.

In many of our experiments, we are constructing a mini version of the cytoskeleton from a limited set of purified components. Using fluorescence microscopy, quantitative analysis and modelling, we can elucidate how the components of the mini-cytoskeleton come together and organize themselves into different structures. We want to understand how self-organizing scaffolds change in response to changing conditions inside the cell. These changing conditions can be caused by normal cell cycle activity changes, by signals stimulating differentiation, or by factors causing disease.

By combining approaches from engineering, chemistry and biology we aim to discover the design principles underlying intracellular order and mechanics, revealing new information about the fundamental physical properties of living cells.


Self-organized radial microtubule networks in microfabricated cell-sized droplets (Juniper et al., Soft Matter 14, 901 (2018)).