Guigó Lab

Guigó Lab

Bioinformatics and Genomics

Guigó Lab
Computational Biology of RNA Processing
Group leader

Guigó Lab

Computational Biology of RNA Processing
Group leader

1988 Ph.D. in Statistics. Universitat de Barcelona. (Spain).
1988-1993 Postdoctoral researcher at the Molecular Biology Computer Research Resource. Dana Farber Cancer Institute, Harvard University (Division of Biostatistics) BioMolecular Engineering Research Center. Boston University and Theoretical Biology And Biophysics Group (Los Alamos national Laboratory).
Since 1994 Investigator at Institut Municipal d’Investigació Mèdica (IMIM). Barcelona, (Spain).
Since 2001 Associate Professor at the Universitat Pompeu Fabra and coordinator of the Bioinformatics Programme at the Centre de Regulació Genòmica, Barcelona, (Spain).


Gene expression patterns may help determine time of death (13/02/2018)
International team of scientists led by CRG programme coordinator Roderic Guigó shows that changes in gene expression in different tissues can be used to predict the time of death of individuals.

National Research Award 2017 to Roderic Guigó (27/12/2017)
Roderic Guigó, coordinator of the CRG Bioinformatics and Genomics Programme, honored with the highest recognition for research excellence in Catalonia.

A new method accelerates the mapping of genes in the “Dark Matter” of our DNA (06/11/2017)
Scientists at the Centre for Genomic Regulation (CRG) in Barcelona, have developed a new method, which improved the most important catalogue of genes -GENCODE-, including characterization of new genes in the DNA “Dark Matter”.

Genome Editing: Pressing the «Delete» Button on DNA (02/03/2017)
Until recently, genomics was a «read-only» science. But scientists led by Rory Johnson at the University of Bern and the Centre for Genomic Regulation in Barcelona, have now developed a tool for quick and easy deletion of DNA in living cells. This software will boost efforts to understand the vast regions of non-coding DNA, or «Dark Matter», in our DNA and may lead to discovery of new disease-causing genes and potential new drugs.

Spanish scientists sequence the genome of the Iberian lynx, the most endangered felid (14/12/2016)
Genomic analysis of the Iberian lynx confirms that it is one of the species with the least genetic diversity among individuals, which means that it has little margin for adaptation.

The Blueprint project celebrates major manuscript release (18/11/2016)
BLUEPRINT scientists, including researchers at the Centre for Genomic Regulation, release a collection of 25 publications in Cell, Cell Press-associated and other high-impact journals. These are part of a package of 41 publications by the International Human Epigenome Consortium (IHEC) of which BLUEPRINT is a member.

'Blueprint' study of epigenetics of blood cells will serve biology and medicine (07/09/2016)
Researchers from the EU-funded BLUEPRINT project join their international colleagues this week at the 2016 International Human Epigenome Consortium (IHEC) conference in Brussels to report the latest results in understanding blood cell development and blood disease.

CRG researchers contribute to the sequencing of the Turbot genome (09/03/2016)
The first vertebrate to be genetically sequenced in Spain, the Turbot (Scophthalmus maximus), has a much more refined visual system than other fish as it has evolved to adapt to the shortage of light of the seabed. In addition, the fat in its cell membranes are far higher than in other species to withstand the low water temperatures in its habitat.

The mesoamerican bean genome decoded (25/02/2016)
An Ibero-American team of scientists decoded the Mesoamerican variety of the bean genome coinciding with the celebration of the International Year of Pulses, as designated by the United Nations.


Research in our group focuses on the investigation of the signals involved in gene specification in genomic sequences (promoter elements, splice sites, translation initiation sites, ...). We are interested both in the mechanism of their recognition and processing, and in their evolution. In addition, but related to this basic component of our research, our group is also involved in the development of software for gene prediction and annotation in genomic sequences. Some of our current projects are:

  • Evaluation of Gene Prediction Programmes
  • Gene Prediction software: geneid
  • Genome-Wide Search for Selenoproteins
  • Gene Prediction by Comparative Genomics
  • Splicing
  • Gene Structure Evolution
  • Phylogenetic Reconstruction

See also the Roderic Guigó lab website

The GEM (GEnome Multi-tool) Library is a set of very optimized tools for indexing/querying huge genomes/files.


A set of very optimized tools for indexing/querying huge genomes/files. Provided so far: a very fast exact mapper, and an unconstrained split-mapper

Contact person:

The resource described, the U12 Intron Database (U12DB), aims to catalog the U12 introns of completely sequenced eukaryotic genomes and associate orthologous introns with each other.

Gene Analysis

U12-type introns are spliced by the U12-dependent spliceosome and are present in the genomes of many higher eukaryotic lineages including plants, chordates and some invertebrates. Investigations into the evolution and mechanism of U12-depending splicing would be facilitated by access to a catalog of such introns. However, due to their relatively recent discovery and a systematic bias against recognition of non-canonical splice sites in general, the introns defined by U12-type splice sites are under-represented in genome annotations. Such under-representation compounds the already difficult problem of determining gene structures. It also impedes attempts to study these introns genome-wide or phylum-wide. The resource described here, the U12 Intron Database (U12DB), aims to catalog the U12 introns of completely sequenced eukaryotic genomes and associate orthologous introns with each other.