
principal quantum number n (a Rydberg 
state5), the EIT condition can be easily vio-
lated by weak interactions between the atoms. 
For an n of about 100, a single Rydberg atom 
will cause a violation of the EIT condition for 
all other atoms within a ‘blockade radius’ of 
10 micrometres. This Rydberg blockade pro-
duces record nonlinearities, as shown recently 
by Adams and colleagues6, and has been 
used to entangle neutral atoms separated by 
micrometre-scale distances7,8. A Rydberg 
polariton can be thought of as a 10-µm sphere 
containing many ground-state atoms and 
one Rydberg atom — or, equivalently, many 
atoms and one photon. Should other photons 
enter a volume already occupied by a Rydberg 
polariton, the blockade effect causes a viola-
tion of the EIT condition, so the photons 
are absorbed rather than transmitted. Note 
that if the atom density is low, as in previous 
experiments6, the absorption probability may  
still be small.

The final, essential ingredient needed to 
generate strong photon–photon interactions 
at the two-photon level is an atomic cloud of 
such high density that when two or more pho-
tons enter a blockade volume, all but one are 
absorbed within that volume, leaving a single 
Rydberg polariton. This ‘photon blockade’ is 
the novelty of Peyronel and colleagues’ study. 
Their experiment reveals that a multi-photon 
incident light beam is converted, within a few 
micrometres, into a beam of single photons, 
with a small (less than 0.09) probability that 
two photons will leave the atomic gas at the 
same time. Interestingly, even though their 
sample is large enough for several Rydberg 
polaritons to coexist, the authors find that 
(and explain why) only one photon at a time is 
found within the entire sample.

An exciting feature of this experiment is 
that there are several clear avenues towards 
improving the properties of the medium. 
Cooler, denser atomic gases and lasers that 

S Y S T E M S  B I O L O G Y 

A cell in a computer
The small genomes of some bacteria could provide the first complete 
understanding of a biological system. A new computer model brings  
this goal closer, by calculating every process in a dividing Mycoplasma cell.

M A R K  I S A L A N

It has long been a dream in biology to push 
reductionism to the limit: to describe a cell 
as a set of interacting components and to 

capture whole-cell behaviour in a computer 
model. A good model doesn’t simply recapitu-
late the observed behaviours that are fed into 
it. Rather, the aim is to predict the unknown 
effect of any novel perturbation or mutation. 
Such goals are very ambitious because of the 
challenge of attempting to obtain quantitative 
information on every one of the cell’s gene 
products and metabolites. Nevertheless, Karr 
et al.1, writing in Cell, present the most com-
prehensive model of a bacterial cell cycle so far, 
built on the basis of individual molecules and 
their relationships. Impressively, the model 
can predict gene-expression levels and cell-
replication times in the challenging context of 

mutations involving gene deletions. 
Mycoplasma genitalium is a urogenital  

bacterial parasite that has only 525 genes, 
making it one of the smallest genomes of any 
independently dividing cell — for comparison, 
the gut bacterium Escherichia coli has around 
4,000 genes. Because of their status as one of 
the ‘simplest’ cells, Mycoplasma species are  
rapidly becoming the most measured biologi-
cal systems in history, and full descriptions 
of their molecular content, in terms of DNA, 
RNA, protein and metabolites, are available2–4. 
The cells are therefore considered to be the 
ideal target for whole-cell modelling5. 

What is striking about Karr and colleagues’ 
model is the sheer ambition of its scale and its 
attention to detail. The authors retrieved (and 
in some cases retested) more than 1,900 exper-
imentally derived cellular parameters, such as 
enzymatic reaction rates and protein-binding 

have a narrower frequency range would 
improve the EIT transmission to nearly 100% 
and reduce the overlap of photons from the 
single-photon source. A looming challenge is 
to reconfigure the experiment so that the two-
photon nonlinearity delays rather than absorbs 
excess photons6. This type of nonlinearity, 
which preserves the number of photons, would 
be extremely useful for quantum-information 
purposes.

In one respect, Peyronel and colleagues have 

Photon Atomic gas

Rydberg polariton

Figure 1 | A stream of single photons. Peyronel et al.2 have directed a beam of overlapping photons 
into an atomic gas in which single photons are converted into collective excitations known as Rydberg 
polaritons. The polaritons, which can be thought of as spheres comprising many atoms and one photon, 
strongly absorb additional photons. On exiting the gas, the polaritons are converted back to individual, 
non-overlapping photons.

demonstrated a quality single-photon light 
source that has a rate of emission in the mega-
hertz regime, as Dudin and Kuzmich have 
shown9 using a related approach. The key capa-
bility of this experiment2 — engineering strong 
photon–photon interactions at the two-pho-
ton level — should also lead to various other 
new possibilities. For example, single-photon 
switches, photon detectors of high quantum 
efficiency, and non-destructive photon detec-
tion can easily be foreseen as extensions of 
this work. The physics of strongly interacting  
photons has a bright future. ■

Thad G. Walker is in the Department of 
Physics, University of Wisconsin-Madison, 
Madison, Wisconsin 53706, USA. 
e-mail: tgwalker@wisc.edu

1. Birnbaum, K. M. et al. Nature 436, 87–90 (2005).
2. Peyronel, T. et al. Nature 488, 57–60 (2012).
3. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. 

Rev. Mod. Phys. 77, 633–673 (2005).
4. Harris, S. E. & Yamamoto, Y. Phys. Rev. Lett. 81, 

3611–3614 (1998).
5. Saffman, M., Walker, T. G. & Molmer, K. Rev. Mod. 

Phys. 82, 2313–2363 (2010).
6. Pritchard, J. D., Weatherill, K. J. & Adams, C. S. 

Preprint at http://arxiv.org/abs/1205.4890  
(2012).

7. Wilk, T. et al. Phys. Rev. Lett. 104, 010502  
(2010).

8. Isenhower, L. et al. Phys. Rev. Lett. 104, 010503 
(2010).

9. Dudin, Y. O. & Kuzmich, A. Science 336, 887–889 
(2012).

4 0  |  N A T U R E  |  V O L  4 8 8  |  2  A U G U S T  2 0 1 2

NEWS & VIEWSRESEARCH

© 2012 Macmillan Publishers Limited. All rights reserved



affinities, from around 900 publications. 
They then combined these to make 28 
sub-models of cellular processes, such 
as metabolism, protein translation and 
DNA replication. They used sub-models 
so that they could apply the appropriate 
modelling method for each process. In 
computational biology, this requirement 
has been neatly summarized6 as “Don’t 
model bulldozers with quarks”. So the 
authors combined different modelling 
techniques involving varying levels 
of detail, to allow different factors — 
including dependence on deterministic 
reactions, known constraints, prob-
ability and random variability — to be 
applied where appropriate.

Crucially, the authors then used a 
computational trick to join up the sub-
models (Fig. 1a). Models calculate vari-
ables — numbers that represent varying 
system states. And variables change 
according to sets of rules — the equa-
tions and parameters used to describe 
the system. The authors allowed each 
sub-model to calculate independently 
the values of a set of 16 variables at a 
time-step of approximately one sec-
ond. They then combined these results, 
which generated a new set of vari-
ables, and the process was repeated in 
a loop. Thus, all the sub-models ‘com-
municated’ with one another and the 
cell’s status was constantly updated 
and recalculated. Although this is an 
approximation, because in reality all 
processes happen simultaneously, the 
end results converged plausibly towards 
the decision to divide, which the authors 
assessed as the moment that the bacterial cell 
membrane ‘pinched’ together to form two new  
cells (Fig. 1b).

After some optimization, the model pro-
duced estimates of metabolite concentrations, 
metabolism rates, and messenger RNA and 
protein levels, that were similar to experimen-
tal data. The model also allowed the authors to 
make several predictions about cell behaviour, 
including that 90% of the cell’s genes will be 
expressed in the first 2.5 hours of the approxi-
mately 9-hour cell cycle. This prediction sug-
gests that the chromosomes are ‘explored’ 
rapidly by gene-expression machinery. The key 
test, however, was whether higher-level system 
properties, such as the time taken for the cell 
to replicate itself, would be correctly predicted 
for bacteria carrying genetic mutations. When 
the researchers ran the model with each of the 
525 genes individually deleted, they found that 
284 of the genes are essential for cell survival 
and 117 are non-essential. These numbers are 
approximately 80% in agreement with experi-
mental data for gene deletions that have been 
assessed previously. 

The authors also tested the growth rates of 
12 of the gene-deleted bacterial strains, and 

found 8 to be within the limits predicted by 
the model. In some of these cases, the experi-
ments resolved discrepancies between the 
model and published growth rates, identify-
ing, for example, a previously undescribed  
slow-growth mutant.

So, can the authors claim to have recreated 
a cell in a computer? They themselves say that 
the model should be compared to the first draft 
of the human genome, and be considered a 
work in progress. However, in modelling, dis-
crepancies between predictions and experi-
mental results are the key to improvements 
— they direct more detailed analyses and 
model refinement, and ultimately lead to better  
models. More challenging tests could be imag-
ined. For example, could the model predict 
synthetic lethal mutants, in which the com-
bination of two gene deletions will kill a cell, 
although either deletion alone permits sur-
vival? Furthermore, any model that attempts 
to predict phenotypes7 (biological proper-
ties) from geno types (gene sequences) will be 
subject to the problem that even genetically 
identical cells do not always give the same 
output. For example, random differences in 
the amount of chaperone proteins can ‘buffer’ 

mutations variably8. However, the Myco-
plasma model can track such variability 
and therefore has the potential to predict  
these outcomes. 

The metaphor of gene networks being 
connected in wiring diagrams is becom-
ing commonplace and, even though 
such networks can be non-intuitive9, 
they are ideal for computer modelling. 
Nevertheless, one of the most excit-
ing ideas in studies of gene regulation 
is that network relationships may not 
always involve direct molecular inter-
actions. For example, imagine a gene 
that is required for cell division — if 
there is low gene expression, the cell 
will not divide and so gene-expression 
levels will have longer to accumulate, 
which can create a feedback loop, or 
gene expression ‘according to need’10,11. 
Fascinatingly, there is already a hint of 
this in one example from Karr and col-
leagues’ model. They find that cell-cycle 
time is affected by the concentrations of 
DNA nucleotides (dNTPs), which are 
required for DNA replication. When 
dNTP levels are low, the cycle slows 
at the point of replication initiation, 
allowing dNTPs to build up, which then 
speeds up the rest of the cycle. 

Extrapolating from such findings, 
I can imagine that similar feedback 
processes might exist for any cellular 
factor that contributes indirectly to 
reducing its own concentration. For 
example, factors for which transiently 
low concentrations reduce the activ-
ity of pathways for cell division, pro-
tein secretion or protein degradation 

might similarly self-regulate, restoring and 
buffering themselves over time. So perhaps 
the most exciting thing about a whole-cell 
model is that it may allow us to look beyond 
the direct molecular ‘cogs and wheels’ 
that drive biology and into the emergent  
properties of biological systems. ■
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Figure 1 | Looping calculations to model cell division.  
a, Karr et al.1 have constructed a computer model that attempts 
to calculate every process in Mycoplasma genitalium cells. Their 
modelling strategy involves 28 independent sub-models of cell 
processes, each incorporating different methods and levels 
of detail. The sub-models communicate by combining their 
calculations for 16 cell variables for approximately one second 
of the cell’s life cycle, and then calculating the next second. The 
looping process culminates when cell division is induced. b, A 
scanning electron micrograph of M. genitalium cells, before (left) 
and during division (right). Scale bar, 0.5 micrometres.
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