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Supplementary information

Supplementary Figures

Supplementary figure 1: Heuristic rules for the evaluation of indels and stop codons. A. Stop codons have
a marked over-representation in the start or end of genes when compared to synonymous polymorphisms. B.
For indels we compare the occurrence rates of sub-classes of indels between essential and non-essential genes.

Here the comparison is made for in frame and out of frame indels smaller than 16 base pairs.
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Supplementary figure 2: A heatmap with the Sj; prediction scores for all retrieved genome-wide gene

deletion collection screens.
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For all conditions, ROC curves and bars illustrating the underlying data in color-

Supplementary figure 3

coded boxes for the 14 tested strains. The first bar shows the variation in the prediction scores Sy, ;; the second

the third bar

the fourth bar indicates the strains scored with a phenotype (either

)

bar shows doubling time (7) deviation, normalized and expressed in standard deviations (SD)

)

normalized growth efficiency (GE) in SDs
T4 or GE deviation larger then 2 SD).
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Supplementary figure 4: The covariance quantifies the agreement between the overall Sy, ; score for the

strains and the score of a single gene. To compare the covariance across conditions we divide the covariance by

the variance of the overall score for that condition. To quantify the number of genes relevant for predictions

across strains, we sorted the genes according to their covariance, and counted the number of genes needed to

reach a covariance level similar to the overall variance. This figure gives the development of the scaled covariance

as genes are added to a running sum as it approximates the actual prediction score Sy, ;.
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Supplementary figure 5: Effect on the overall prediction AUC of ignoring polymorphisms that occur beyond

the given frequency in our data set.
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Supplementary tables

Supplementary table 1. Overview of variants in the 6609 genes of 18 high coverage strains when compared
to the reference strain S288c. For each strain the total number of synonymous and non-synonymous SNPs, SNPs
that introduce stop codons and indels are quantified across all genes. The last column shows the number of

genes that have an estimated probability of altered function over 90%.

Strain ‘ sSNP ‘ nsSNP ‘ Stop ‘ Indel ‘ P(LOF) > 0.9 ‘

DBVPG1373 14805 | 7521 20 514 o4
DBVPG1788 14774 | 7705 20 478 92
DBVPG6044 | 28530 | 14731 | 50 | 603 231
DBVPG6765 | 15971 | 8482 17 | 655 75
L.1528 14444 | 7429 17 481 51
NCYC110 25487 | 12661 34 484 154
RM11.1A 16349 | 8469 19 737 69
SK1 29543 | 15550 50 765 246
UWOPS03.461.4 | 24954 | 12518 30 460 179
UWOPS05.217.3 | 22641 | 11360 27 448 142
UWOPS05.227.2 | 25265 | 12766 | 31 | 487 182
W303 3084 1724 2 197 16

Y55 25777 | 13680 36 750 202

YJM789 19845 | 9469 27 691 64
YJIM975 15088 | 7936 20 484 62
YJM9I78 15231 | 8055 20 475 64
YPS128 23550 | 10429 20 545 91
YPS606 23545 | 10503 | 21 554 92

Supplementary table 2 (.txt) Curated test set of gold standard positive (1) and gold standard negative (0)

sequence variants in yeast proteins.

Supplementary table 3 (.xls). To assess the rate at which indels or potentially damaging nsSNPs are false
reported, we PCR amplified and sequenced 20 indels and 56 SNPs. The file provides the details of each selected

variant, the PCR primers for each variant, the expected polymorphism, and the sequencing result .

Supplementary table 4 (.txt). Phenotypic predictions (Sp; scores) for each strain based on each of 180

gene sets retrieved from genome-wide gene deletion collection screens.

Supplementary table 5 (.txt). The minimal doubling time and growth efficiency, normalized relative to the

growth of S288c as the logarithmic strain coefficient (LSC), for all growth experiments used in this manuscript.



Supplementary table 6 (.txt). The mean minimal doubling time and growth efficiency LSC for every

condition.

Supplementary table 7. The influence on performance of the threshold used to define a phenotype, the
choice of response variable, the type of variation considered (var 1 = nsSNPs, var 2 = nsSNPs + indels, var 3 =
nsSNPs-+stops, and pruning the gene sets per condition. Gene set size (N), the Pubmed ID for the article from

which the gene set was taken and the number of strains (Str) with a phenotype are provided.
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Supplementary table 8 (.txt) Per gene and cumulative covariance over variance statistics.
Supplementary file (dataExplorer.rar).

A tool to explore the data that underlies our predictions. Expand the archive and read the Readme.txt for
details. The program requires that a recent version of Java is installed.



Supplementary note

Alternative sources of gene sets

In the main text of our article we describe how gene sets from reverse genetics studies can be used to generate
phenotypic predictions. However, we also explored the use of gene sets defined by gene expression profiling. We
obtained expression data for five conditions that we had experimentally evaluated. As shown in the table below,
overall performance is poor with a prediction AUC of 0.43. Three conditions predict poorly and one prediction
predicts reasonably. Interestingly, the predictions for high salt are good. Investigating this further we found that
the gene ENAI1 has a strong influence on the prediction, and indeed a recent study suggested ENA1 harbours
an important QTL for saline stress sensitivity|1]. Indeed ENA1 is a false negative in the gene set defined by
the genome-wide reverse genetic screen because the deletion is not present in the deletion collection. Although
using gene sets defined by expression changes may be useful in some cases, it is not yet clear to us how to best
incorporate this data into the overall prediction model. Consistent with this, previous work has shown that the
sets of genes that change expression in a particular condition and the set of genes that affect growth in that
condition when mutated show little overlap /2, 3, 4, 5, 6, 7/.

Supplementary note table 1: Prediction results for five conditions where the gene sets were taken from
mRNA profiling studies.

Condition | PMID | Setsize | AUC |

NaCl 1.25M 18753408 639 0.96
Tunicamycin 1.5ug/ml 10929718 129 0.2
MMS 0.01% 16709784 149 0.33
Arsenite bmM 15575969 48 0.38
Cycloheximide 0.1ug/ml | 10929718 68 0.82
Overall 0.43

Median 0.38

Assuming epistasis when calculating the prediction score

Systematic genetic interaction screens [8, 9] and a limited number of examples [10, 11] have highlighted the
importance of epistasis in determining the phenotypic outcome of mutations when they are combined. We
suspect that considering non-additive epistatic interactions between sequence variants will also be important
to improve phenotypic predictions for individuals. As the specific interactions are not currently known or
readily deducible, it is not possible to explicitly include them. However, we could make assumptions about the
predominant type of epistasis, and observe the effects on predictions.

To examine the effects of assuming overall positive or negative epistasis we used the following formula for the
prediction score:

Sii= 31— (1- P(AF))"
j=1

Where S}, ; is the prediction score for a strain h in a condition i, calculated over all genes j. The parameter
alpha modifies the relative contributions of the estimated likelihoods of altered function of the genes P;(AF').
To compensate for divergence between strains we normalize to the same expected score per gene set.
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The figure below demonstrates the effect of varying alpha. The figure shows the relative contribution to S, ;
of 100 genes with Pj(AF) equally spaced between 0 and 0.99. The normal scheme takes the sum of the log
transformed 1— Pj(AF') scores, this distribution of relative contributions is approximated when alpha approaches
zero. If alpha is greater than zero, the relative contributions of different P;j(AF') become more similar. In this
way a large prediction score is more likely to reflect several genes with moderate scores rather than a single
gene with a large score, which is similar to synergistic epistasis. If alpha is negative, fewer genes will have a
significant influence on the overall score, which is similar to antagonistic epistasis. As an extreme example of
antagonistic epistasis we also included a regime where for a gene set only the gene with the highest P;(AF) is
considered.

Supplementary note figure 1: The relative contribution of genes to the prediction score for different weight-
ing schemes. There are 100 genes with gene scores equidistantly from P(AF)=0 to P(AF)=0.99.
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The results are presented in the following table. The most striking result is that using only the gene with the
biggest p(AF) as a prediction score, predictive performance is very poor. The other methods differ only slightly,
but it appears there is some evidence against assuming overall synergistic epistasis, yet no evidence for or against
assuming antagonistic epistasis.
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Supplementary note table 2: Performance for different schemes for calculating the prediction score.

condition normal | alpha=1 | alpha=2 | alpha=-0.25 | highest P(AF) ‘
Overall 0.69 0.68 0.66 0.69 0.55
Hydroxyurea 15mg/ml 0.96 0.94 0.88 0.98 0.8
CaCl2 0.7TM 0.96 0.92 0.88 0.96 0.54
Cisplatin 150ug/ml 0.94 0.96 0.96 0.94 0.27
Galactose 0.9 0.9 0.9 0.9 0.9
Cykloheximide 0.1ug/ml 0.85 0.79 0.76 0.85 0.33
Arsenite 5bmM 0.83 0.85 0.83 0.83 0.38
Superoxide (paraquat) 400 ug/ml 0.82 0.93 0.89 0.84 0.62
LiCl 225mM 0.76 0.85 0.88 0.73 0.3
Glycerol 0.71 0.73 0.73 0.73 0.54
Heat 40C 0.69 0.69 0.58 0.67 0.81
DTT 2.5mM 0.63 0.6 0.68 0.68 0.68
Doxorubicin 20ug/ml 0.63 0.67 0.67 0.5 0.42
NaCl 1.25M 0.56 0.46 0.33 0.65 0.56
Miconazole 4ug/ml 0.53 0.5 0.5 0.48 0.63
Methanol 15% 0.48 0.48 0.48 0.55 0.33
MMS 0.01% 0.43 0.4 0.4 0.4 0.5
Tunicamycin 1.5ug/ml 0.38 0.36 0.33 0.36 0.56

A linear model to relate the prediction scores to phenotypes

In the main text the output variable of the prediction process is the ranking of the strains based on their growth
in a particular condition. We chose to use ranks because in several aspects the inputs to the predictions are not
quantitative. For instance, a gene is either in the gene set or it is not, and no information is available on the
actual size of the effect caused by the deletion of the gene. Additionally, the use of ranks makes the predictions
directly comparable across conditions. This is relevant as the expected prediction score is not similar for every
gene set. This is because some genes are much more prone to accumulate variations, e.g. because of repetitive
sequences or the location on the chromosome, and these genes can be considerably more plentiful in some gene
sets than in others. Further, using the threshold on the effect size is a simple and transparent way to combine the
two response variables, i.e. growth rate and growth efficiency, requiring no further assumptions. The threshold
was varied and predictions were shown to be better for larger effects. Here we illustrate that our conclusions do
not depend on the chosen statistical methodology.

As an input to our analysis we used the S}, ; prediction scores per strain over all conditions, and the deviations
from normal for both growth rate and growth efficiency expressed in standard deviations. To combine the
two response variables we simply took the largest deterioration of growth of the two for every condition and
strain. As noted above, the S}, ; prediction scores should not be compared directly between conditions. To
make the comparisons the scores were standardized for every conditon. The analyses were performed in R, an
environment for statistical computing [12]. We used the lme4 package [13] to fit a linear mixed effects model
where the combined phenotype score is predicted by the prediction scores (as a fixed effect). To correct for
any condition specific effects on the response variable, the conditions are fitted as fixed effects, also any strain
specific effect is taken into account by fitting them as a random effect. An ANOVA comparison of the model with
just the fits for the conditons and the strains to the model which included the prediction scores, demonstrates
that the prediction scores improve the model with high statistical significance (p = 8 - 107®) with both the
AIC and BIC coefficients decreasing. The figure is a scatterplot that illustrates the overall relation between
the standardized prediction scores and the combination of the two response variables. We also show the scores
against the phenotypic variable for every condition separate.
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Supplementary note figure 2: A scatterplot illustrating the relation between the standardized prediction

score and the maximal growth defect across the conditions. All strains/condition pairs that exceed 2 SD are
displayed in red.
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Supplementary note figure 3: Scatter plots for every condition of the standardized sore vs. the maximal
growth defect. Also the conditions that had less than 2 strains with a defect larger than 2 standard deviations,
i.e. pH 3, pH 7.5 and 5-FU are shown.
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Phenotype predictions through analysis of variation in transcription factor binding sites

Our predictions only relied on variations in protein coding sequences. However, variations in the regulatory
regions of genes are also likely to contribute to phenotypes. Earlier, we evaluated numerous features of promoters
and binding sites to predict if a variation in an experimentally-defined transcription factor binding site [14] is
likely to be detrimental [15]. We fitted a generalized linear model to integrate the numerous features with
conservation of the binding sites as an outcome variable. The assumption we use here is that sites that are

14



conserved are more likely to cause a phenotypic change when disrupted. Our system predicts the likelihood of
conservation for every transcription factor binding site with a variation. We treat these likelihoods the same as
the P(AF') as described in the main text to make prediction scores. The prediction results are shown in below.
Overall very poor predictions are observed with an overall AUC near random. Correcting for the number of
binding sites in a promoter does not change this conclusion. We think that the main reason for this result is
that the annotation of important regulatory regions is likely to be very incomplete.

Supplementary note table 3: Prediction results for transcription factor binding sites. The fourth column
represents the fraction of the gene set where a gene has a perturbation in the binding sites of its promoter in at
least one strain.

Condition ‘ Gene set size ‘ AUC ‘ Gene set fraction with variations
Galactose 9 0.9 0.11
Miconazole 4ug/ml 29 0.1 0.1
Heat 40C 167 0.46 0.18
NaCl 1.25M 55 0.52 0.16
Superoxide (paraquat) 400 ug/ml 31 0.16 0.1
Tunicamycin 1.5ug/ml 36 0.82 0.17
MMS 0.01% 98 0.55 0.17
CaCI2 0.7TM 166 0.42 0.17
LiCl 225mM 100 0.58 0.12
Arsenite 5mM 245 0.25 0.17
Hydroxyurea 15mg/ml 82 0.29 0.21
Methanol 15% 52 0.67 0.23
Glycerol 374 0.54 0.15
DTT 2.5mM 35 0.33 0.17
Cisplatin 150ug/ml 70 0.59 0.17
Cykloheximide 0.1ug/ml 150 0.48 0.15
Doxorubicin 20ug/ml 67 0.58 0.19
Overall 0.48 0.16
Median 70 0.52 0.17
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