Chromatin and Gene Expression

Chromatin and Gene Expression

Gene Regulation, Stem Cells and Cancer

Chromatin and Gene Expression

Group leader
j

Chromatin and Gene Expression

Group leader
j

1967 M.D. University of Göttingen (Germany).
1970 Ph.D. Biochemistry (“Habilitation”), University of Marburg (Germany).
1970-1973 Associated Scientist, Cancer Research Institut Columbia University, Nueva York (USA).
1973-1978 Assistant Professor, Physiological Chemistry Institute, University of Marburg (Germany).
1978-1987 Associate Professor, Physiological Chemistry Institute, University of Marburg (Germany).
1987- Full Professor, Institut für Molekularbiologie und Tumorforschung (IMT), University of Marburg (Germany).
1993-2000 Director of the Institut für Molekularbiologie und Tumorforschung (IMT), University of Marburg (Germany).
1999 Visiting Professor, Dept. of Life and Health Sciences, Univeristy Pompeu Fabra, Barcelona (Spain).
2001 Senior Scientist and Group Leader of the Chromatin and Gene Expression Group, within the Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona (Spain).
2001-2011 Coordinator of the Gene Regulation Programme, Centre for Genomic Regulation, Barcelona (Spain).
2001-June 2011 Director of the Center for Genomic Regulation, Barcelona (Spain).

News

Miguel Beato and Roni Wright awarded by the Catalan Society of Biology (12/07/2017)
Miguel Beato was given the SCB Prize in recognition of his career and Roni Wright was given the SCB Prize in the category of best scientific article.

The importance of keeping silent... in breast cancer cells (07/07/2016)
Researchers at the Centre for Genomic Regulation describe a repression mechanism active in hormone-dependent breast cancer cells for the first time.

A new energy source within the cells (02/06/2016)
Scientists at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, find evidence of a new energy source within cell nucleus. Their results, which are published in Science, shed light on how in exceptional situations cells can reprogram gene expression and point at a new player for targeted cancer medicine.

Summary

Using steroid hormone action in breast cancer cells as a model, the group explores how eukaryotic cells respond to external cues; specifically, how signals are transduced to the nucleus and modulate chromatin structure and gene expression. Previously, we found that gene regulation by progestins involves the communication of membrane-attached and nuclear progesterone receptor (PR) associated with ERK and MSK1 kinases and involves two consecutive cycles of chromatin remodelling: a very rapid displacement of histone H1 mediated by NURF, ASCOM/MLL2, CDK2, PARP1 and KDM5, followed by a slower displacement of histones H2A/H2B mediated by PCAF and BAF. The Mb topological chromatin domains (TADs) conserved in the human genome behave as units of hormone response that undergo structural changes in response to hormone. Unexpectedly we found that the ATP required for the associated chromatin remodelling is generated in the nucleus from ADP-Ribose and PPi by the enzyme NUDIX5. Our final aim is to integrate the signalling network with the changes in the topological organization of chromatin and the transcriptional response to generate a multidimensional network that will reveal the logic of the hormonal control of cell proliferation.

ERC Synergy Project - Dynamics of Genome Architecture in Stable and Transient Changes in Gene Expression

Chromosomes and genes are non-randomly positioned in the cell nucleus and the vision of a dynamic and complex organization of the nucleus is replacing the classical view of genomes as linear sequences. (+more info)

Other information about the group

We acknowledge the financial contribution of the Spanish Ministry of Science and Technology and the European Regional Development Fund (ERDF) to the development of the project “Chromatin dynamics in gene regulation by steroid hormones" (ref. BMC2003-02902).